Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Vaccin Immunother ; 20(1): 2309693, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38330990

ABSTRACT

ER+ breast cancers (BC) are characterized by the elevated expression and signaling of estrogen receptor alpha (ESR1), which renders them sensitive to anti-endocrine therapy. While these therapies are clinically effective, prolonged treatment inevitably results in therapeutic resistance, which can occur through the emergence of gain-of-function mutations in ESR1. The central importance of ESR1 and development of mutated forms of ESR1 suggest that vaccines targeting these proteins could potentially be effective in preventing or treating endocrine resistance. To explore the potential of this approach, we developed several recombinant vaccines encoding different mutant forms of ESR1 (ESR1mut) and validated their ability to elicit ESR1-specific T cell responses. We then developed novel ESR1mut-expressing murine mammary cancer models to test the anti-tumor potential of ESR1mut vaccines. We found that these vaccines could suppress tumor growth, ESR1mut expression and estrogen signaling in vivo. To illustrate the applicability of these findings, we utilize HPLC to demonstrate the presentation of ESR1 and ESR1mut peptides on human ER+ BC cell MHC complexes. We then show the presence of human T cells reactive to ESR1mut epitopes in an ER+ BC patient. These findings support the development of ESR1mut vaccines, which we are testing in a Phase I clinical trial.


Subject(s)
Breast Neoplasms , Vaccines , Humans , Animals , Mice , Female , Breast Neoplasms/genetics , Breast Neoplasms/therapy , Mutation , Estrogens/therapeutic use , Signal Transduction , Vaccines/therapeutic use
2.
Cancer Gene Ther ; 30(6): 794-802, 2023 06.
Article in English | MEDLINE | ID: mdl-35821284

ABSTRACT

The development and success of RNA-based vaccines targeting SARS-CoV-2 has awakened new interest in utilizing RNA vaccines against cancer, particularly in the emerging use of self-replicating RNA (srRNA) viral vaccine platforms. These vaccines are based on different single-stranded RNA viruses, which encode RNA for target antigens in addition to replication genes that are capable of massively amplifying RNA messages after infection. The encoded replicase genes also stimulate innate immunity, making srRNA vectors ideal candidates for anti-tumor vaccination. In this review, we summarize different types of srRNA platforms that have emerged and review evidence for their efficacy in provoking anti-tumor immunity to different antigens. These srRNA platforms encompass the use of naked RNA, DNA-launched replicons, viral replicon particles (VRP), and most recently, synthetic srRNA replicon particles. Across these platforms, studies have demonstrated srRNA vaccine platforms to be potent inducers of anti-tumor immunity, which can be enhanced by homologous vaccine boosting and combining with chemotherapies, radiation, and immune checkpoint inhibition. As such, while this remains an active area of research, the past and present trajectory of srRNA vaccine development suggests immense potential for this platform in producing effective cancer vaccines.


Subject(s)
COVID-19 , Cancer Vaccines , Neoplasms , RNA Viruses , Humans , Genetic Vectors , Cancer Vaccines/genetics , Vaccination , SARS-CoV-2/genetics , RNA , RNA Viruses/genetics , Neoplasms/genetics , Neoplasms/therapy
3.
ACS Nano ; 15(5): 8474-8483, 2021 05 25.
Article in English | MEDLINE | ID: mdl-33914524

ABSTRACT

The rapid and reliable recognition of nucleic acid sequences is essential to a broad range of fields including genotyping, gene expression analysis, and pathogen screening. For viral detection in particular, the capability is critical for optimal therapeutic response and preventing disease transmission. Here, we report an approach for detecting identifying sequence motifs within genome-scale single-strand DNA and RNA based on solid-state nanopores. By designing DNA oligonucleotide probes with complementarity to target sequences within a target genome, we establish a protocol to yield affinity-tagged duplex molecules the same length as the probe only if the target is present. The product can subsequently be bound to a protein chaperone and analyzed quantitatively with a selective solid-state nanopore assay. We first use a model DNA genome (M13mp18) to validate the approach, showing the successful isolation and detection of multiple target sequences simultaneously. We then demonstrate the protocol for the detection of RNA viruses by identifying and targeting a highly conserved sequence within human immunodeficiency virus (HIV-1B).


Subject(s)
Nanopores , Nucleic Acids , Conserved Sequence , DNA , DNA Probes , Humans
4.
Article in English | MEDLINE | ID: mdl-35128545

ABSTRACT

The HIV-1 nef gene terminates in a 3'-UGA stop codon, which is highly conserved in the main group of HIV-1 subtypes, along with a downstream potential coding region that could extend the nef protein by 33 amino acids, if readthrough of the stop codon occurs. Antisense tethering interactions (ATIs) between a viral mRNA and a host selenoprotein mRNA are a potential viral strategy for the capture of a host selenocysteine insertion sequence (SECIS) element (Taylor et al, 2016) [1]. This mRNA hijacking mechanism could enable the expression of virally encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine (SeC). Here we show that readthrough of the 3'-terminal UGA codon of nef occurs during translation of HIV-1 nef expression constructs in transfected cells. This was accomplished via fluorescence microscopy image analysis and flow cytometry of HEK 293 cells, transfected with engineered GFP reporter gene plasmid constructs, in which GFP can only be expressed by translational recoding of the UGA codon. SiRNA knockdown of thioredoxin reductase 1 (TR1) mRNA resulted in a 67% decrease in GFP expression, presumably due to reduced availability of the components involved in selenocysteine incorporation for the stop codon readthrough, thus supporting the proposed ATI. Addition of 20 nM sodium selenite to the media significantly enhanced stop codon readthrough in the pNefATI1 plasmid construct, by >100%, supporting the hypothesis that selenium is involved in the UGA readthrough mechanism.

5.
BBA Adv ; 12021.
Article in English | MEDLINE | ID: mdl-34988542

ABSTRACT

Selenium status plays a major role in health impacts of various RNA viruses. We previously reported potential antisense interactions between viral mRNAs and host mRNAs encoding isoforms of the antioxidant selenoprotein thioredoxin reductase (TXNRD). Here, we examine possible targeting of selenoprotein mRNAs by Zika virus (ZIKV), because one of the most devastating outcomes of ZIKV infection in neonates, microcephaly, is a key manifestation of Progressive Cerebello-Cerebral Atrophy (PCCA), a genetic disease of impaired selenoprotein synthesis. Potential antisense matches between ZIKV and human selenoprotein mRNAs were identified computationally, the strongest being against human TXNRD1 and selenoprotein P (SELENOP), a selenium carrier protein essential for delivery of selenium to the brain. Computationally, ZIKV has regions of extensive (~30bp) and stable (ΔE < -50kcal/mol) antisense interactions with both TXNRD1 and SELENOP mRNAs. The core ZIKV/SELENOP hybridization was experimentally confirmed at the DNA level by gel shift assay using synthetic oligonucleotides. In HEK293T cells, using Western blot probes for SELENOP and TXNRD1, ZIKV infection knocked down SELENOP protein expression almost completely, by 99% (p<0.005), and TXNRD1 by ~90% (p<0.05). In contrast, by RT-qPCR, there was no evidence of significant changes in SELENOP and TXNRD1 mRNA levels after ZIKV infection, suggesting that their knockdown at the protein level is not primarily a result of mRNA degradation. These results suggest that knockdown of SELENOP and TXNRD1 by ZIKV in fetal brain, possibly antisense-mediated, could mimic SELENOP knockout, thereby contributing to neuronal cell death and symptoms similar to the genetic disease PCCA, including brain atrophy and microcephaly.

SELECTION OF CITATIONS
SEARCH DETAIL
...